
1 Discrete Regularization

Dengyong Zhou
Bernhard Schölkopf

Many real-world machine learning problems are situated on finite discrete sets,
including dimensionality reduction, clustering, and transductive inference. A va-
riety of approaches for learning from finite sets has been proposed from different
motivations and for different problems. In most of those approaches, a finite set
is modeled as a graph, in which the edges encode pairwise relationships among the
objects in the set. Consequently many concepts and methods from graph theory are
adopted. In particular, the graph Laplacian is widely used.

In this chapter we present a systemic framework for learning from a finite set
represented as a graph. We develop discrete analogues of a number of differential
operators, and then construct a discrete analogue of classical regularization theory
based on those discrete differential operators. The graph Laplacian based approaches
are special cases of this general discrete regularization framework. An important
thing implied in this framework is that we have a wide choices of regularization on
graph in addition to the widely-used graph Laplacian based one.

1.1 Introduction

Many real-world machine learning problems can be described as follows: given a
set of objects X = {x1, x2, . . . , xl, xl+1, . . . , xn} from a domain of X (e.g., Rd) of
which the first l objects are labeled as y1, . . . , yl ∈ Y = {1,−1}, the goal is to
predict the labels of remaining unlabeled objects indexed from l + 1 to n. If the
objects to classify are totally unrelated to each other, we cannot make any prediction
statistically better than random guessing. Typically we may assume that there exist
pairwise relationships among data. For examples, given a finite set of vectorial data,
the pairwise relationships among data points may be described by a kernel [10]. A
dataset endowed with pairwise relationships can be naturally modeled as a weighted
graph. The vertices of the graph represent the objects, and the weighted edges
encode the pairwise relationships. If the pairwise relationships are symmetric, the
graph is undirected; otherwise, the graph is directed. A typical example for directed
graphs is the World Wide Web (WWW), in which hyperlinks between web pages

2 Discrete Regularization

Figure 1.1 The relations among induction, deduction and transduction.

may be thought of as directed edges.
Any supervised learning algorithm can be applied to the above inference problem,

e.g., by training a classifier f : X → Y with the set of pairs {(x1, y1), . . . , (xl, yl)},
and then using the trained classifier f to predict the labels of the unlabeled objects.
Following this approach, one will have estimated a classification function defined on
the whole domain X before predicting the labels of the unlabeled objects. According
to [13](see also Chap. 24), estimating a classification function defined on the whole
domain X is more complex than the original problem which only requires predicting
the labels of the given unlabeled objects, and a better approach is to directly predict
the labels of the given unlabeled objects. Therefore here we consider estimating a
discrete classification function which is defined on the given objects X only. Such an
estimation problem is called transductive inference [13]. In psychology, transductive
reasoning means linking particular to particular with no consideration of the general
principles. It is generally used by young children. In contrast, deductive reasoning,
which is used by used by adults and older children, means the ability to come to a
specific conclusion based on a general premise.

It is well known that many meaningful inductive methods such as Support Vector
Machines (SVMs) can be derived from a regularization framework, which minimizes
an empirical loss plus a regularization term. Inspired by this work, we define discrete
analogues of a number of differential operators, and then construct a discrete ana-
logue of classical regularization theory [12, 15] using the discrete operators. Much
existing work including spectral clustering, transductive inference and dimension-
ality reduction can be understood in this framework. More importantly, a family of
new approaches is derived.

1.2 Discrete Analysis and Differential Geometry 3

1.2 Discrete Analysis and Differential Geometry

In this section, we first introduce some basic notions on graph theory, and then
propose a family of discrete differential operators, which constitute the basis of the
discrete regularization framework introduced in the next section.

1.2.1 Preliminaries

A graph G = (V,E) consists of a finite set V, together with a subset E ⊆ V × V.

The elements of V are the vertices of the graph, and the elements of E are the
edges of the graph. We say that an edge e is incident on vertex v if e starts from
v. A self-loop is an edge which starts and ends at the same vertex. A path is a
sequence of vertices (v1, v2, . . . , vm) such that [vi−1, vi] is an edge for all 1 < i ≤ m.

A graph is connected when there is a path between any two vertices. A graph is
undirected when the set of edges is symmetric, i.e., for each edge [u, v] ∈ E we also
have [v, u] ∈ E. In the following, the graphs are always assumed to be connected,
undirected, and have no self-loops or multiple edges.

A graph is weighted when it is associated with a function w : E → R+ which
is symmetric, i.e. w([u, v]) = w([v, u]), for all [u, v] ∈ E. The degree function
d : V → R+ is defined to be

d(v) :=
∑
u∼v

w([u, v]),

where u ∼ v denote the set of the vertices adjacent with v, i.e. [u, v] ∈ E. Let
H(V) denote the Hilbert space of real-valued functions endowed with the usual
inner product

〈f, g〉H(V) :=
∑
v∈V

f(v)g(v),

for all f, g ∈ H(V). Similarly define H(E). In what follows, we will omit the
subscript of inner products if we do not think it is necessary. Note that function
h ∈ H(E) have not to be symmetric. In other words, we do not require h([u, v]) =
h([v, u]).

1.2.2 Gradient and Divergence Operators

In this section, we define the discrete gradient and divergence operators, which can
be thought of as discrete analogues of their counterparts in the continuous case.

Definition 1.1 The graph gradient is an operator ∇ : H(V) → H(E) defined by

(∇ϕ)([u, v]) :=

√
w([u, v])
g(v)

ϕ(v)−

√
w([u, v])
g(u)

ϕ(u), for all [u, v] ∈ E. (1.1)

4 Discrete Regularization

Figure 1.2 An undirected graph.

The gradient measures the variation of a function on each edge. Clearly,

(∇ϕ)([u, v]) = −(∇ϕ)([v, u]), (1.2)

i.e., ∇ϕ is skew-symmetric.

Remark 1.2 A obvious problem is why we define the graph gradient as equation
1.1. In the uniform 2-dimensional lattice case, one may naturally define the discrete
gradient as

(∇ϕ)([i, i+ 1]) = f(i+ 1)− f(i),

where i denotes the index of a node of the lattice. The problem that we have to
deal with here is the irregularity of a general graph. Intuitively, in our definition,
before computing the variation of a function between two adjacent vertices, we split
the function value at each vertex along its adjacent edges before according to a
certain proportion based on the weights. Formally, this definition is the only choice
for recovering the well-known graph Laplacian in the way shown in the following
sections. 1.2.3

We may also define the graph gradient at each vertex. Given a function ϕ ∈ H(V)
and a vertex v, the gradient of ϕ at v is defined by ∇ϕ(v) := {(∇ϕ)([v, u])|[v, u] ∈
E}. We also often denote ∇ϕ(v) by ∇vϕ. Then the norm of the graph gradient ∇ϕ
at vertex v is defined by

‖∇vϕ‖ :=
(∑

u∼v

(∇ϕ)2([u, v])
) 1

2

,

1.2 Discrete Analysis and Differential Geometry 5

and the p-Dirichlet form of the function ϕ by

Sp(ϕ) :=
1
2

∑
v∈V

‖∇vϕ‖p.

Intuitively, the norm of the graph gradient measures the roughness of a function
around a vertex, and the p-Dirichlet form the roughness of a function over the
graph. In addition, we define ‖∇ϕ([v, u])‖ := ‖∇vϕ‖. Note that ‖∇ϕ‖ is defined in
the space H(E) as ‖∇ϕ‖ = 〈∇ϕ,∇ϕ〉1/2

H(E).

Definition 1.3 The graph divergence is an operator div : H(E) → H(V) which
satisfies

〈∇ϕ,ψ〉H(E) = 〈ϕ,−divψ〉H(V), for all ϕ ∈ H(V), ψ ∈ H(E). (1.3)

In other words, −div is defined to be the adjoint of the graph gradient. Eq.(1.3)
can be thought of as discrete analogue of the Stokes’ theorem 1. Note that the inner
products in the left and right sides of (1.3) are respectively in the spaces H(E) and
H(V).

Proposition 1.4 The graph divergence can be computed as

(divψ)(v) =
∑
u∼v

√
w([u, v])
g(v)

(
ψ([v, u])− ψ([u, v])

)
, (1.4)

Proof

〈∇ϕ,ψ〉 =
∑

[u,v]∈E

∇ϕ([u, v])ψ([u, v])

=
∑

[u,v]∈E

(√
w([u, v])
g(v)

ϕ(v)−

√
w([u, v])
g(u)

ϕ(u)
)
ψ([u, v])

=
∑

[u,v]∈E

√
w([u, v])
g(v)

ϕ(v)ψ([u, v])−
∑

[u,v]∈E

√
w([u, v])
g(u)

ϕ(u)ψ([u, v])

=
∑
r∈V

∑
u∼r

√
w([u, r])
g(r)

ϕ(r)ψ([u, r])−
∑
r∈V

∑
v∼r

√
w([r, v])
g(r)

ϕ(r)ψ([r, v])

=
∑
r∈V

ϕ(r)
(∑

u∼r

√
w([u, r])
g(r)

ψ([u, r])−
∑
v∼r

√
w([r, v])
g(r)

ψ([r, v])
)

=
∑
r∈V

ϕ(r)
∑
u∼r

√
w([u, r])
g(r)

(
ψ([u, r])− ψ([r, u])

)
.

1. Given a compact Riemannian manifold (M, g) with a function f ∈ C∞(M) and a vector
field X ∈ X(M), it follows from the stokes’ theorem that

R
M
〈∇f, X〉 = −

R
M

(div X)f.

6 Discrete Regularization

The last equality implies (1.4).

Intuitively, the divergence measures the net outflow of function ψ at each vertex.
Note that if ψ is symmetric, then (divψ)(v) = 0 for all v ∈ V.

1.2.3 Laplace Operator

In this section, we define the graph Laplacian, which can be thought of as discrete
analogue of the Laplace-Beltrami operator on Riemannian manifolds.

Definition 1.5 The graph Laplacian is an operator ∆ : H(V) → H(V) defined by
2

∆ϕ := −1
2

div(∇ϕ). (1.5)

Substituting (1.1) and (1.4) into (1.5), we have

(∆ϕ)(v) =
1
2

∑
u∼v

√
w([u, v])
g(v)

(
(∇ϕ)([u, v])− (∇ϕ)([v, u])

)

=
∑
u∼v

√
w([u, v])
g(v)

(√
w([u, v])
g(v)

ϕ(v)−

√
w([u, v])
g(u)

ϕ(u)
)

= ϕ(v)−
∑
u∼v

w([u, v])√
g(u)g(v)

ϕ(u). (1.6)

The graph Laplacian is a linear operator because both the gradient and divergence
operators are linear. Furthermore, the graph Laplacian is self-adjoint:

〈∆ϕ, φ〉 =
1
2
〈−div(∇ϕ), φ 〉 =

1
2
〈∇ϕ,∇φ 〉 =

1
2
〈ϕ,−div(∇φ)〉 = 〈ϕ,∆φ〉.

and positive semi-definite:

〈∆ϕ,ϕ〉 =
1
2
〈−div(∇ϕ), ϕ 〉 =

1
2
〈∇ϕ,∇ϕ〉 = S2(ϕ) ≥ 0. (1.7)

It immediate follows from (1.7) that

Theorem 1.6 2∆ϕ = DϕS2.

Remark 1.7 Equation (1.6) shows that our graph Laplacian defined by (1.5) is
identical to the Laplace matrix in [3] defined to be D−1/2(D −W)D−1/2, where D
is a diagonal matrix with D(v, v) = g(v), and W is a matrix satisfying W (u, v) =
w([u, v]) if [u, v] is an edge and W (u, v) = 0 otherwise. The matrix L = D −W is
often referred to as the combinatorial or unnormalized graph Laplacian. It can also

2. The Laplace-Beltrami operator ∆ : C∞(M) → C∞(M) is defined to be ∆f =
− div(∇f). The additional factor 1/2 in (1.5) is due to each edge being counted twice.

1.2 Discrete Analysis and Differential Geometry 7

be derived in a similar way. Specifically, define a graph gradient by

(∇ϕ)([u, v]) :=
√
w([u, v])(ϕ(v)− ϕ(u)), for all [u, v] ∈ E,

and then the rest proceeds as the above.

Remark 1.8 For the connection between graph Laplacians (including the Laplacian
we presented here) and the usual Laplacian in the continuous case, we may refer the
readers to [14, 6, 2]. The main point is that, if we assume the vertices of a graph
are sampled from some distribution, then the combinatorial graph Laplacian does
not converge to the usual Laplacian when the sampling size goes to infinity unless
the distribution is uniform.

1.2.4 Curvature Operator

In this section, we define the graph curvature as a discrete analogue of the mean
curvature operator in the continuous case.

Definition 1.9 The graph curvature is an operator κ : H(V) → H(V) defined by

κϕ := −1
2

div
(

∇ϕ
‖∇ϕ‖

)
. (1.8)

Substituting (1.1) and (1.4) into (1.8), we obtain

(κϕ)(v) =
∑
u∼v

√
w([u, v])
g(v)

(
∇ϕ
‖∇ϕ‖

([u, v])− ∇ϕ
‖∇ϕ‖

([v, u])
)

=
∑
u∼v

w([u, v])√
g(v)

[
1

‖∇uϕ‖

(
ϕ(v)√
g(v)

− ϕ(u)√
g(u)

)
− 1
‖∇vϕ‖

(
ϕ(u)√
g(u)

− ϕ(v)√
g(v)

)]
=

1
2

∑
u∼v

w([u, v])√
g(v)

(
1

‖∇uϕ‖
+

1
‖∇vϕ‖

)(
ϕ(v)√
g(v)

− ϕ(u)√
g(u)

)
. (1.9)

Unlike the graph Laplacian (1.5), the graph curvature is a non-linear operator.
As in Theorem 1.6, we have

Theorem 1.10 κϕ = DϕS1.

Proof

(DϕS1)(v) =
∑
u∼v

[
w([u, v])
‖∇uϕ‖

(
ϕ(v)
g(v)

− ϕ(u)√
g(u)g(v)

)
+
w([u, v])
‖∇vϕ‖

(
ϕ(v)
g(v)

− ϕ(u)√
g(u)g(v)

)]
=

∑
u∼v

w([u, v])
(

1
‖∇uϕ‖

+
1

‖∇vϕ‖

)(
ϕ(v)
g(v)

− ϕ(u)√
g(u)g(v)

)
=

∑
u∼v

w([u, v])√
g(v)

(
1

‖∇uϕ‖
+

1
‖∇vϕ‖

)(
ϕ(v)√
g(v)

− ϕ(u)√
g(u)

)
.

Comparing the last equality with (1.9) completes the proof.

8 Discrete Regularization

1.2.5 p-Laplace Operator

In this section, we generalize the graph Laplacian and curvature to an operator,
which can be thought of as the discrete analogue of the p-Laplacian in the contin-
uous case [5, 7].

Definition 1.11 The graph p-Laplacian is an operator ∆p : H(V) → H(V) defined
by

∆pϕ := −1
2

div(‖∇ϕ‖p−2∇ϕ). (1.10)

Clearly, ∆1 = κ, and ∆2 = ∆. Substituting (1.1) and (1.4) into (1.10), we obtain

(∆pϕ)(v) =
1
2

∑
u∼v

w([u, v])√
g(v)

(‖∇uϕ‖p−2 +‖∇vϕ‖p−2)
(
ϕ(v)√
g(v)

− ϕ(u)√
g(u)

)
, (1.11)

which generalizes (1.6) and (1.9).
As before, it can be shown that

Theorem 1.12 p∆pϕ = DϕSp.

Remark 1.13 There is much literature on the p-Laplacian in the continuous case.
We refer to [7] for a comprehensive study. There is also some work on discrete
analogue of the p-Laplacian, e.g., see [16], where it is defined as

∆pϕ(v) =
1

gp(v)

∑
u∼v

wp−1([u, v])|ϕ(u)− ϕ(v)|p−1 sign(ϕ(u)− ϕ(v)),

where gp(v) =
∑

u∼v w
p−1([u, v]) and p ∈ [2,∞[. Note that p = 1 is not allowed.

1.3 Discrete Regularization Framework

Given a graph G = (V,E) and a label set Y = {1,−1}, the vertices v in a subset
S ⊂ V are labeled as y(v) ∈ Y. The problem is to label the remaining unlabeled
vertices, i.e., the vertices in the complement of S. Assume a classification function
f ∈ H(V), which assigns a label sign f(v) to each vertex v ∈ V. Obviously, a good
classification function should vary as slowly as possible between closely related
vertices while changing the initial label assignment as little as possible.

Define a function y ∈ H(V) with y(v) = 1 or−1 if vertex v is labeled as positive or
negative respectively, and 0 if it is unlabeled. Thus we may consider the optimization
problem

f∗ = argmin
f∈H(V)

{Sp(f) + µ‖f − y‖2}, (1.12)

where µ ∈]0,∞[is a parameter specifying the trade-off between the two competing
terms. It is not hard to see the objective function is strictly convex, and hence

1.3 Discrete Regularization Framework 9

by standard arguments in convex analysis the optimization problem has a unique
solution.

1.3.1 Regularization with p = 2

When p = 2, it follows from Theorem 1.6 that

Theorem 1.14 The solution of (1.12) satisfies that ∆f∗ + µ(f∗ − y) = 0.

The equation in the theorem can be thought of as discrete analogue of the Euler-
Lagrange equation. It is easy to see that we can obtain a closed form solution
f∗ = µ(∆ + µI)−1y, where I denotes the identity operator. Define the function
c : E → R+ by

c([u, v]) =
1

1 + µ

w([u, v])√
g(u)g(v)

, if u 6= v; and c([v, v]) =
µ

1 + µ
. (1.13)

We can show that the iteration

f (t+1)(v) =
∑
u∼v

c([u, v])f (t)(v) + c([v, v])y(v), for all v ∈ V, (1.14)

where t indicates the iteration step, converges to a closed form solution [17].
Moreover, the iterative result is independent of the setting of the initial value. The
iteration can be intuitively thought of as sort of information diffusion. At every
step, each node receives the values from its neighbors, which are weighed by the
normalized pairwise relationships. At the same time, they also retain some fraction
of their values. The relative amount by which these updates occur is specified by
the coefficients defined in (1.13). In what follows, this iteration approach will be
generalized to arbitrary p.

Remark 1.15 It is easy to see that the regularizer of p = 2 can be rewritten into

1
2

∑
u,v

w([u, v])
(

f(u)√
g(u)

− f(v)√
g(v)

)2

, (1.15)

which we earlier suggested for transductive inference [17]. A closely related one is

1
2

∑
u,v

w([u, v])(f(u)− f(v))2, (1.16)

which appeared in [8, 1, 19]. From the point of view of spectral clustering, the former
regularizer is derived from the normalized cut [11], and the later is derived from the
ratio-cut [4].

Remark 1.16 One can construct many other similar regularizers. For instance,

10 Discrete Regularization

one might consider [9]

1
2

∑
u,v

(
f(v)−

∑
u∼v

p([u, v])f(u)
)2

, (1.17)

where the function p : E → R+ is defined to be p([u, v]) = w([u, v])/g(u). Note that
p is not symmetric. This regularizer measures the difference of function f at vertex
v, and the average of f at the neighbors of v.

1.3.2 Regularization with p = 1

When p = 1, it follows from Theorem 1.10 that

Theorem 1.17 The solution of (1.12) satisfies that κf∗ + 2µ(f∗ − y) = 0.

As we have mentioned before, the curvature κ is a non-linear operator, and we are
not aware of any closed form solution for this equation. However, we can construct
an iterative algorithm to obtain the solution. Substituting (1.9) into the equation
in the theorem, we have

∑
u∼v

w([u, v])√
g(v)

(
1

‖∇uf∗‖
+

1
‖∇vf∗‖

)(
f∗(v)√
g(v)

− f∗(u)√
g(u)

)
+2µ(f∗(v)−y(v)) = 0.

(1.18)

Define the function m : E → R+ by

m([u, v]) = w([u, v])
(

1
‖∇uf∗‖

+
1

‖∇vf∗‖

)
. (1.19)

Then ∑
u∼v

m([u, v])√
g(v)

(
f∗(v)√
g(v)

− f∗(u)√
g(u)

)
+ 2µ(f∗(v)− y(v)) = 0,

which can be transformed into(∑
u∼v

m([u, v])
g(v)

+ 2µ
)
f∗(v) =

∑
u∼v

m([u, v])√
g(u)g(v)

f∗(u) + 2µy(v).

Define the function c : E → R+ by

c([u, v]) =

m([u, v])√
g(u)g(v)∑

u∼v

m([u, v])
g(v)

+ 2µ
, if u 6= v; and c([v, v]) =

2µ∑
u∼v

m([u, v])
g(v)

+ 2µ
. (1.20)

Then

f∗(v) =
∑
u∼v

c([u, v])f∗(v) + c([v, v])y(v). (1.21)

1.4 Conclusion 11

Thus we can use the iteration

f (t+1)(v) =
∑
u∼v

c(t)([u, v])f (t)(v) + c(t)([v, v])y(v), for all v ∈ V (1.22)

to obtain the solution, in which the coefficients c(t) are updated according to (1.20)
and (1.19). This iterative result is independent of the setting of the initial value.
Compared with the iterative algorithm (1.14) in the case of p = 2, the coefficients
in the present method are adaptively updated at each iteration, in addition to the
function being updated.

1.3.3 Regularization with Arbitrary p

For arbitrary p, it follows from Theorem 1.12 that

Theorem 1.18 The solution of (1.12) satisfies that p∆pf
∗ + 2µ(f∗ − y) = 0.

We can construct a similar iterative algorithm to obtain the solution. Specifically,

f (t+1)(v) =
∑
u∼v

c(t)([u, v])f (t)(v) + c(t)([v, v])y(v), for all v ∈ V, (1.23)

where

c(t)([u, v]) =

m(t)([u, v])√
g(u)g(v)∑

u∼v

m(t)([u, v])
g(v)

+
2µ
p

, if u 6= v; and c(t)([v, v]) =

2µ
p∑

u∼v

m(t)([u, v])
g(v)

+
2µ
p

,

(1.24)

and

m(t)([u, v]) =
w([u, v])

p
(‖∇uf

(t)‖
p−2

+ ‖∇vf
(t)‖

p−2
). (1.25)

It is easy to see that the iterative algorithms in Sections 1.3.1 and 1.3.2 are the
special cases of this algorithm with p = 2 and p = 1 respectively. Moreover, it is
worth noticing that p = 2 is a critical point.

1.4 Conclusion

In this chapter, we proposed the discrete analogues of a family of differential
operators, and the discrete analogue of classical regularization theory based on
those discrete differential operators. A family of transductive inference algorithms
corresponding different discrete differential operators was naturally derived from
the discrete regularization framework.

There are many possible extensions to this work. One may consider defining dis-

12 Discrete Regularization

crete high-order differential operators, and then building a regularization framework
that can penalize high-order derivatives. One may also develop a parallel framework
on directed graphs [18], which model many real-world data structures, such as the
World Wide Web. Finally, it is of interest to explore the properties of the graph
p-Laplacian as the nonlinear extension of the usual graph Laplacian, since the latter
has been intensively studied, and has many nice properties [3].

References

1. M. Belkin, I. Matveeva, and P. Niyogi. Regression and regularization on large
graphs. In Proc. 17th Annual Conf. on Learning Theory, 2004.

2. O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. In
Advances in Neural Information Processing Systems 16. MIT Press, Cambridge,
MA, 2004.

3. F. Chung. Spectral Graph Theory. Number 92 in CBMS Regional Conference
Series in Mathematics. American Mathematical Society, Providence, RI, 1997.

4. L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and
clustering. IEEE. Trans. on Computed Aided Desgin, 11:1074–1085, 1992.

5. R. Hardt and F.H. Lin. Mappings minimizing the Lp norm of the gradient.
Communications on Pure and Applied Mathematics, 40:556–588, 1987.

6. M. Hein, J. Audibert, and U. von Luxburg. From graphs to manifolds - weak
and strong pointwise consistency of graph laplacians. In Proc. 18th Conf. on
Learning Theory, pages 470–485, 2005.

7. J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear Potential Theory of
Degenerate Elliptic Equations. Oxford University Press, Oxford, 1993.

8. T. Joachims. Transductive learning via spectral graph partitioning. In Proc.
20th Intl. Conf. on Machine Learning, 2003.

9. S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323–2326, 2000.

10. B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, 2002.

11. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905,
2000.

12. A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-posed Problems. W. H.
Winston, Washington, DC, 1977.

13. V.N. Vapnik. Statistical Learning Theory. Wiley, NY, 1998.

14. U. von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral clustering. In
Advances in Neural Information Processing Systems 17. MIT Press, Cambridge,
MA, 2005.

14 REFERENCES

15. G. Wahba. Spline Models for Observational Data. Number 59 in CBMS-NSF
Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1990.

16. M. Yamasaki. Ideal boundary limit of discrete Dirichlet functions. Hiroshima
Math. J., 16(2):353–360, 1986.

17. D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Schölkopf. Learning with
local and global consistency. In Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.

18. D. Zhou, B. Schölkopf, and T. Hofmann. Semi-supervised learning on directed
graphs. In Advances in Neural Information Processing Systems 17. MIT Press,
Cambridge, MA, 2005.

19. X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using
Gaussian fields and harmonic functions. In Proc. 20th Intl. Conf. on Machine
Learning, 2003.

